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Why Can’t Calculus Students Access their Knowledge to
Solve Nonroutine Problems?

Annie Selden, John Selden, Shandy Hauk, and Alice Mason

ABSTRACT. In two previous studies we investigated the abilities of students
just finishing their first year of a traditionally taught calculus sequence to
solve nonroutine differential calculus problems. This paper reports on a sim-
ilar study, using the same nonroutine calculus problems, with students who
had completed one and one-half years of traditional calculus and were in the
midst of an ordinary differential equations course. More than half of these
students were unable to solve even one problem and more than a third made
no substantial progress toward any solution. A test of associated algebra and
calculus skills indicated that many of the students were familiar with the key
calculus concepts for solving the nonroutine problems; nonetheless, students
often used sophisticated algebraic methods rather than calculus in approaching
the nonroutine problems. We suggest a possible explanation. These students
may have had too few tentative solution starts in their problem situation im-
ages to help prime recall of the associated factual knowledge. We also discuss
the importance of this for teaching.

1. Introduction

1.1. Background. Two previous studies demonstrated that students with C’s
as well as those with A’s or B’s in a traditional first calculus course had very limited
success in solving nonroutine problems (Selden, Mason, and Selden, 1989; Selden,
Selden, and Mason, 1994). Further, the second study showed that many of these
students were unable to solve nonroutine problems for which they appeared to have
an adequate knowledge base. This raised the question of whether more experienced
students, those towards the end of a traditional calculus/differential equations se-
quence, would have more success; in particular, would they be better able to access
and use their knowledge in solving nonroutine problems?  Folklore has it that
one only really learns material from a mathematics course in subsequent courses.
The results reported here in part support and in part controvert this notion. As
will be discussed, the differential equations students in this study often used alge-
braic methods (first introduced to them several years before their participation in
the study) in preference to those of calculus courses taken more recently. These
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students, who had more experience with calculus than those in the first two stud-
ies, appealed to sophisticated arithmetic and algebraic arguments more frequently
than students in the earlier studies. Although somewhat more accomplished in their
problem-solving ability, slightly more than half of them still failed to solve a single
nonroutine problem, despite many having an apparently adequate knowledge base.

As in the previous two studies, what we are calling a nonroutine or novel
problem is simply called a problem, as opposed to an exercise, in problem-solving
studies (Schoenfeld, 1985). A problem can be seen as comprised of two parts: a
task and a solver. The solver comes equipped with information and skills and is
confronted with a cognitively non-trivial task; that is, the solver does not already
know a method of solution. Seen from this perspective, a problem cannot be solved
twice by the same person, nor is a problem independent of the solver’s background.
In traditional calculus courses most tasks fall more readily into the category of
exercise than problem. However, experienced teachers can often predict that par-
ticular tasks will be problems for most students in a particular course, and tasks
that appear to differ only slightly from traditional textbook exercises can become
problems in this sense.

1.2. Overview of the Paper and Related Literature. In Section 2 we
describe the setting and subjects — differential equations students who had taken
a traditional calculus course obtaining grades of A, B, or C, at least one fourth of
whom went on to obtain master’s degrees and one a Ph.D. We present the two tests
— one with five moderately nonroutine differential calculus problems, administered
first, and a subsequent ten-question routine test of corresponding algebra and cal-
culus skills. Section 3 contains a comparison of these students’ performance on the
two tests and introduces the notions of full, substantial, and insubstantial factual
knowledge. In Section 4 we provide detailed information on the students’ favored
solution methods and compare these with what was observed in our previous two
studies (Selden et al., 1989, 1994). Although the differential equations students
were slightly more inclined to use calculus than students in the previous studies,
they did so on only 39% of their solution attempts, preferring a combination of
guessing, trial-and-error, arithmetic techniques, and algebra.

In Section 5 we analyze our results and suggest that students only slowly come
to use their factual knowledge of calculus, or other mathematics, flexibly. Somewhat
similar observations have also been made by Carlson (1998), Stacey and MacGregor
(1997), and Dorier, Pian, Robert, and Rogalski (1998). While our differential equa-
tions students were quite ready to employ algebraic techniques, they were much less
inclined, or able, to use calculus effectively. We introduce a nonroutineness scale
for problems. Although nonroutineness is only one aspect of problems, the ability
to solve moderately nonroutine problems is often seen as a hallmark of deep under-
standing of a the material in a course. We ask why our students could not solve our
nonroutine problems and conjecture that they lacked a kind of knowledge, which
when brought to mind produces what Mason and Spence (1999) have referred to
as “knowing-to act in the moment.” In describing this additional kind of knowl-
edge we build on Tall and Vinner’s (1981) idea of concept image. We introduce
the notion of problem situation image, a mental structure associated with problem
situations which may contain, amongst other things, tentative solution starts, i.e.,
various ways of beginning to solve a problem.
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Finally some teaching implications of this conjecture are discussed in Section 6.
We restrict our attention to moderately nonroutine problem-solving, referring read-
ers to the work of Schoenfeld and others (Arcavi, Kessel, Meira, and Smith, 1998;
Santos-Trigo, 1998; Schoenfeld, 1985) for a general treatment of problem-solving.
We suggest that the construction of a problem situation, and its image, depends
on student activities (experiences) analogous to the construction of a concept, as
described by Breidenbach, Dubinsky, Hawks, and Nichols (1992) and Sfard (1991).

The central question we ask is: Why could our students not access their knowl-
edge of calculus when needed? This question, of how one comes to know to act in a
given situation, has been largely neglected in the mathematics education research
literature. We offer a conjecture: what is missing is a kind of knowledge — ten-
tative solution starts, ways of beginning, that are part of an individual’s problem
situation image. Such knowledge arises from a habit of mind, that of reflecting
on various possible starting points. Yet, how does such knowledge come to mind
in the moment? This is a question of how one brings information from long-term
memory (one’s knowledge base) into short-term memory (see Baddeley, 1995) and
makes it conscious (see, for example, James, 1910 or Mangan, 1993). We suggest
that recognizing a problem situation partly activates the information in its image
which then primes the recall of factual knowledge.

2. The Course, the Students, and the Tests

2.1. The Calculus/Differential Equations Sequence. The setting is a
southeastern comprehensive state university having an engineering emphasis and
enrolling about 7500 students — the same university of the earlier studies of C and
A /B first-term calculus students (Selden et al., 1989, 1994). The annual average
ACT composite score of entering freshman is slightly above the national average
for high school graduates, e.g., in the year the data were collected the university
average was 21.1, compared to the national average of 20.6.

A large majority of students who take the calculus/differential equations se-
quence at this university are engineering majors. The rest are usually science or
mathematics majors. A separate, less rigorous, calculus course is offered for stu-
dents majoring in other disciplines.

Until Fall Semester 1989, the calculus/differential equations sequence was of-
fered as a five-quarter sequence of five-hour courses. Since then, it has been offered
as a four-semester sequence. Under both the quarter and the semester systems it
has been taught, with very few exceptions, by traditional methods with limited, if
any, use of technology and with standard texts (Swokowski (1983), Berkey (1988),
or Stewart (1987), for calculus and Zill (1986) for differential equations. Class size
was usually limited to 35-40 students, but some sections were considerably smaller
and a few considerably larger. All but three sections were taught by regular, full-
time faculty of all ranks; the three exceptions were taught by a part-time associate
professor who held a Ph.D. in mathematics. All instructors taught according to
their usual methods and handled their own examinations and grades.

2.2. The Students. The pool of 128 differential equations students consid-
ered in this study came from all five sections of differential equations taught in
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Spring 1991, omitting only a few students who had taken an experimental calculator-
enhanced calculus course or who were participants in the two previous studies. All
students in this pool had a grade of at least C in first-term calculus.

In the middle of the Spring semester, all of the 128 beginning differential equa-
tions students were contacted by mail and invited to participate in the study. As
with the previous study of A/B calculus students (Selden et al., 1994), each student
was offered $15 for taking the two tests and told he or she need not, in fact should
not, study for them. The students were told that three groups of ten students would
be randomly selected according to their first calculus grades and in each group there
would be four prizes of $20, $15, $10, and $5. The latter was an incentive to ensure
that all students would be motivated to do their best. Altogether 11 A, 14 B, and 12
C students volunteered and ten were randomly selected from each group. Of those,
28 students (nine A, ten B, and nine C) actually took the tests: three mathematics
majors and 25 engineering majors (nine mechanical, five chemical, four civil, four
electrical, two industrial, and one undeclared engineering concentration). These
majors reflected the usual clientele for the calculus/differential equations sequence.

TABLE 1. Fall 1990 Calculus III grades for study participants and
for all students enrolled in the course.

Grade Participants All Students

A 4 1™%) 8  (5%)
B 6 (21%) 24 (15%)
C 7 (30%) 49  (30%)
D 4 (17%) 41 (25%)
F 2 9%) 33 (20%)
W 0 0%) 10 (6%)
Total 23 (100%) 165 (100%)

At the time of the study, all but one of the 28 students tested had taken the third
semester of calculus at this university; the one exception was enrolled in Calculus
IIT and Differential Equations simultaneously. Their grades in Calculus IIT were 5
A,8B,8C,4D, and 2 F. Of these, one D student and one F student were repeating
Calculus IIT while taking Differential Equations. Twenty-three of the students had
taken Calculus IIT in the immediately preceding semester (Fall 1990). Their grades
and the grades of all students who took Calculus IIT that semester are given in
Table 1, which indicates that the better mathematics students are over-represented
in this study.

In Table 2 we give the mean ACT scores and the mean cumulative grade point
averages (GPA) at the time of the test for the 28 students in this study and compare
this with the same information for the students in our two earlier studies (Selden
et al., 1989, 1994). The numbers for the Differential Equations (DE) students are
quite close to those of the A/B calculus students but considerably above those of
the C calculus students.

Eleven of the 28 differential equations students in this study had already taken
additional mathematics courses. Of the three mathematics majors, two had com-
pleted, and the third was then currently taking, a “bridge to proof” course, and the
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TABLE 2. Mean ACT and GPA of students in all three studies.

Study Mean ACT Mean Math ACT Cumulative GPA
DE 26.26 27.74 3.145
(A/B) Calculus  27.12 28.00 3.264
(C) Calculus 24.18 25.65 2.539

third had also taken Discrete Structures. In addition, five students had taken Com-
plex Variables, and another was enrolled in that course at the time of the study.
One of these five had also taken an introductory matrix algebra course, as had two
other students. Except for one C, all grades for these students in these additional
mathematics courses were at least B. In our analysis of the results we will com-
pare the students who had studied mathematics beyond the calculus/differential
equations sequence with those who had not.

Of the 28 students in this study, 22 (79%) graduated within six years of their
admission to the university as first-year students. In comparison, for the university
as a whole over the same time period, the average graduation rate within six years
of admission was 41%.

As of May 1999, it was known that all but two of the 28 students tested had
earned bachelor’s degrees at this university, three in mathematics and the others in
engineering. In addition, five students had earned master’s degrees in engineering
and one had earned an MBA, all at this university. One student had earned a
master’s degree in mathematics at this university and a Ph.D. in mathematics at
another university. There may be additional accomplishments of these kinds among
the 28 students, but they could not all be traced.

The students in this study represented 33% of the A’s, 26% of the B’s, and 6%
of the C’s in Differential Equations that semester, and none of the 30 D’s, F’s and
W’s. In addition, after a minimum of three semesters at this university, these 28
students had a mean GPA of 3.145 for all courses taken. Their graduation rate was
almost double that of the university as a whole, and at least 25% of them went on
to complete a graduate degree. By all these indicators, at the time of the study
and subsequently, these students were among the most successful at the university.

2.3. The Tests. The items for the nonroutine test were originally chosen
for the study of average calculus students’ problem solving (Selden et al., 1989).
Problems were chosen which could be solved using material covered in the first
term of differential calculus. That the five nonroutine problems were, in fact, novel
for those students was determined by inviting department faculty to an informal
seminar where possible problems were presented and the faculty were asked for
suggestions. To the best of our knowledge, these problem types had not been
taught or assigned in any of the classes that year. Solutions to the problems are no
more complex than those traditionally covered in the university’s calculus courses.
However, in order to make progress towards a solution, students must access and
combine ideas in ways that are new.

Students were allowed one hour to take the five-problem nonroutine test, fol-
lowed by half an hour for a ten-part routine test comprised of associated algebra
and calculus exercises. Prior to the nonroutine test, the students were told they
might find some of the problems a bit unusual. No calculators were allowed. They
were asked to write down as many of their ideas as possible because this would be
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helpful to us and to their advantage. They were told that A students (in first cal-
culus) would only be competing against other A students for prizes, and similarly,
for B and C students. They were assured all prizes would be awarded and partial
credit would be given.

Each nonroutine problem was printed on its own page, on which student work
was to be done. All students appeared to work diligently for the entire hour.

As soon as the nonroutine tests were collected, the students were given the
two-page routine test. They were told answers without explanations would be
acceptable, but they could show their work if they wished. Most students worked
quickly, taking from 12 to 17.5 minutes to complete the routine exercises. None
stayed the allotted half hour.

2.3.1. The Nonroutine Test.

1. Find values of a and b so that the line 2z + 3y = a is tangent to the graph
of f(z) = bz? at the point where z = 3.
2. Does 22! + z'% — 71 + 2 = 0 have any roots between —1 and 0? Why or
why not?
ar, r<l1

3. Letf(z) = ba® 4341 o1 Find a and b so that f is differentiable at 1.
’+x+1, x

4. Find at least one solution to the equation 4z% — z* = 30 or explain why no
such solution exists.
5. Is there an a such that
i 202 —2ax+zx—a—1
P 22 —2x—3
exists? Explain your answer.

2.3.2. The Routine Test.
1. (a) What is the slope of the line tangent to y = 2% at = = 1?
(b) At what point does the tangent line touch the graph of y = z2?
Find the slope of the line z + 3y = 5.
If f(x) = 2° + =, where is f increasing?
If f(z) =271, find f'(2).
(a) Suppose f is a differentiable function. Does f have to be continuous?

(b) Ts f(x)

O

_Jz, >0
=12
Find the maximum value of f(z) = —2 + 2z — 22.
2 _

Find lim © .

z—=1 x—1
Do the indicated division: £ —1) 23 —22 + 2z — 1.
If 5 is a root of f(z) = 0, at what point (if any) does the graph of y = f(x)
cross the z-axis?

10. Consider f(z) =

continuous?

©®o N o

x2, z<1
z+3, z>1
(a) Find lim f(z).

z—1t

(b) What is the derivative of f(z) from the left at z = 1
(sometimes called the left-hand derivative)?

As in the previous studies (Selden et al., 1989, 1994), each nonroutine test
problem was assigned 20 points and graded by one of the authors and checked
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by the others. If the student’s work showed substantial progress toward a correct
solution then at least 10 points were awarded. Arithmetic errors reduced scores by
1 point. The mean score on the nonroutine test was 21.3, as compared with 20.4
for the A/B and 10.2 for the C calculus students. The lowest nonroutine score in
all three studies was zero.

On the routine test each question was assigned 10 points. Again, one point
might be lost for an arithmetic or representational error.! The highest routine test
score was 100 (out of 100) and the lowest score was 50, as compared to a high score
of 90 and a low score of 53 for the A/B calculus students (Selden et al., 1994). The
mean score on the routine test was 75.3.

Each problem on the nonroutine test could be solved using a combination of
basic calculus and algebra skills. The correspondence between routine questions
and nonroutine problems is given in Table 3.

TABLE 3. Correspondence between routine questions and nonrou-
tine problems.

Nonroutine problem | 1 2 3 4 5
Corresponding routine questions | 1,2 |3,4,9(5,10|6,9|7,8

3. The Results

We present the test results from several different perspectives. We examine the
students’ ability to solve nonroutine problems, their knowledge base (of associated
basic calculus and algebra skills), and whether they were able to access and use
their resources effectively.

3.1. Ability to Solve Nonroutine Problems. Slightly more than half (57%)
the differential equations students (16 of 28) failed to solve a single nonroutine prob-
lem. This is somewhat better than the two-thirds of A/B, and all of C, first-year
calculus students who failed to solve a single nonroutine problem in the previous
studies (Selden et al., 1989, 1994).

In order to analyze the nonroutine test results, we make a distinction between
a solution attempt, a page containing written work submitted as a solution to a
nonroutine problem, and a solution try, any one of several distinct approaches
to solving the problem contained within a single solution attempt. In only four
instances did a student not attempt a nonroutine problem; thus there were 136
attempts by the 28 students on the five nonroutine problems. On these attempts
there were a total of 243 solution tries. Of the 136 attempts, 20 were judged
completely correct (except possibly for a minor computational error). Twelve other
solution attempts were found to be substantially correct because they exhibited
substantial progress toward a solution, that is, the proposed solution could have
been altered or completed to arrive at a correct solution.

Of the 20 completely correct solutions, five were for Problem 1, three for Prob-
lem 2, five for Problem 3, none for Problem 4, and seven for Problem 5. These
completely correct attempts came from 12 of the 28 students; the 12 substantially

1An answer of 5 on Routine Problem 9 received full credit as most students did not seem to
distinguish between “meet” and “cross.”



CALCULUS STUDENTS AND NONROUTINE PROBLEMS 135

correct attempts came from 11 students. Altogether, 18 of the 28 students pro-
vided at least one substantially or completely correct solution attempt. That is,
36% of the differential equations students (10 of 28) were unable to make substantial
progress on any nonroutine problem; this is lower than the 42% and 71% reported
previously for A/B and C first-year calculus students (Selden et al., 1989, 1994).
Thus, the differential equations students did perform somewhat better than the
first-year calculus students.

3.2. Comparison of Nonroutine and Routine Test Results: Did Stu-
dents Have Adequate Resources and Use Them? The routine test was de-
signed to determine whether the students’ inability to do the nonroutine problems
was related to an inadequate knowledge base of calculus and algebra skills (i.e.,
Schoenfeld’s (1985, 1992) “resources”). Did the students lack the necessary factual
knowledge or did they have it without being able to access it effectively? Scores
on the corresponding routine questions (shown in Table 3) were taken as indicat-
ing the extent of a student’s factual knowledge regarding a particular nonroutine
problem. As in our 1994 study, a student was considered to have substantial factual
knowledge for solving a nonroutine problem if that student scored at least 66% on
the corresponding routine questions. A student was considered to have full factual
knowledge for solving a nonroutine problem if that student’s answers to the corre-
sponding routine questions were correct, except possibly for notation, for example,
answering (1, —1) instead of —1 to Question 6. All others were considered as having
insubstantial factual knowledge.

Table 4 gives the number of completely or substantially correct solutions for
nonroutine problems by solver’s factual knowledge (as demonstrated on the corre-
sponding routine questions). For example, on Problem 1, 15 (of 28) students had
full factual knowledge; of these, five gave completely correct and two gave substan-
tially correct solutions. An additional ten (of 28) students had substantial factual
knowledge for Problem 1, but none of them gave completely or substantially correct
solutions. That is, the performance of these ten students on the routine questions
seemed to indicate they had sufficient factual knowledge to solve, or at least make
substantial progress on, Problem 1; yet they either did not access it or were unable
to use their knowledge effectively to make progress. The remaining three students
demonstrated insubstantial factual knowledge. Thus, a total of seven students gave
completely or substantially correct solutions on Problem 1.

Taking another perspective, in the 59 routine test solution attempts in which
students demonstrated full factual knowledge, they were able to solve the corre-
sponding nonroutine problem 14 times (24%) or make substantial progress towards
its solution six times (10%). Thus, on slightly more than a third of their attempts
(34%), these students accessed their knowledge effectively. Students with substan-
tial, but not full factual knowledge, did so on less than a quarter of their attempts.
These results are summarized in Table 5. Furthermore, six students showed no
factual knowledge of the components necessary for a nonroutine problem and they
each had a score of zero on the corresponding nonroutine problem.

In order to compare overall student performances on the routine and non-
routine tests, we introduce the notion of a score pair, denoted {a, b}, where a is the
student’s score on the routine test and b is the student’s score on the nonroutine
test. In every case, a > b. Figure 1 shows students’ routine test scores in ascending
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TABLE 4. Number of correct solutions for nonroutine problems by
solver’s factual knowledge.

Nonroutine problem

1 2 3 4 5
Full factual knowledge 5 8 5 14 22
Problem completely correct 5 1 1 0 7
Problem substantially correct 2 0 1 o0 3
Substantial factual knowledge 10 19 12 1 2
Problem completely correct 0 2 4 0 O
Problem substantially correct 0O 3 1 0 O
Insubstantial factual knowledge g8 6 11 18 4
Problem completely correct o 0 o0 0 O
Problem substantially correct 0O 0 1 0 1
Total completely or substantially correct 7 6 8 0 11

TABLE 5. Percentage of correct solutions to nonroutine problems
from students with the requisite factual knowledge.

Full factual Substantial factual
knowledge (59) knowledge only(44)

24% (14/59) 14% (6/44)

Completely correct
nonroutine solution
Substantially correct
nonroutine solution

10% (6/59) 9% (4/44)

order (from left to right); superimposed below each student’s routine test score is
her /his nonroutine test score.

The three students with the highest nonroutine scores had score pairs of {90, 69},
{85,59}, and {83,59}; the first of these subsequently obtained a B.S. in civil en-
gineering, summa cum laude with a cumulative grade point average of 3.948. The
three mathematics majors in the study, all of whom had completed at least one
additional mathematics course at the time of the study, had score pairs {95, 34},
{89, 18} and {87,21}. That is, they scored in the top quarter on the routine test,
and taken together, scored slightly higher than the mean nonroutine score of 21.3.
The last of these three subsequently obtained a Ph.D. in mathematics from a major
state university.

Student performance on the routine and nonroutine tests was not improved by
having studied additional mathematics. The respective mean scores for the eleven
students who had done so were 73.1 (vs. 75.3 for all of the students) and 15.3 (vs.
21.3 for all of the students).

Figure 1 shows a positive correlation (coefficient r = 0.68) between factual
knowledge (resources) and the ability to solve novel problems. Nonetheless, having
the resources for a particular problem is not enough to assure that one will be able
to solve it. Two students had score pairs of {86,4} and {80,3}, suggesting that
having a reasonably good knowledge base of calculus and algebra skills (resources)
is not sufficient to make substantial progress on nonroutine calculus problems. One
student, score pair {83,59}, lacked substantial factual knowledge on only those
routine questions associated with Problems 2 and 4 (on which he scored zero) and
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90
g5 86 86 87 87 89 =
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FIGURE 1. Upper score is for the routine test (factual knowledge).
Lower score is for the nonroutine test.

solved the three remaining nonroutine problems (1, 3 and 5) completely correctly.
This student and one other, the {90, 69} score pair, were the only students whose
performance on the routine questions appeared to correspond closely with the non-
routine problems they solved. An analysis of solution attempts indicates that some
students were hampered by misconceptions. Indeed, the literature (Amit and Vin-
ner, 1990; Eylon and Lynn, 1988) suggests that misconceptions are more likely to
surface during attempts to solve nonroutine problems, a phenomenon observed in
this study and discussed in Section 4.

4. Favored Solution Methods

4.1. Nonroutine Problem 1. Find values of a and b so that the line 2x +
3y = a is tangent to the graph of f(x) = bx? at the point where z = 3.

Fifteen students rewrote the equation of the line in the form y = § — %m, set
the right-hand side of this equation equal to that of the parabola and solved for
either a or b. Eight of these ignored the tangency of the line to the curve. The
remaining seven also set the derivative of f equal to the slope of the line to obtain
a second equation so a and b could be fully determined. These were the seven with
completely or substantially correct solutions. An additional seven students took a
derivative, but abandoned it at some point.

The two most frequently occurring misconceptions on Problem 1 involved the
meaning of tangent line. Six students conflated the ideas of the equation of the
tangent line, the slope of the tangent line, and the derivative of the function. Two
other students incorrectly claimed that the tangent line was perpendicular to the
curve at the point of tangency and used the negative reciprocal of the derivative
for the slope of the tangent line. Missing among these students was the error found
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among A /B calculus students of confusing a secant line, calculated using two points
on the parabola, with the tangent line.

4.2. Nonroutine Problem 2.

Does 2! + z'% —z7! + 2 = 0 have any roots between —1 and 02 Why or why
not?

On Problem 2, the three correct, and three substantially correct, solutions made
no use of calculus. Instead, all used sophisticated arithmetic and algebraic reasoning
to compare the relative sizes of the component terms in the given polynomial. The
correct solutions made use of the observation that, for values of x in the open
interval (—1, 0), both —z~! and 22! + z'° + 2 would be positive and hence their
sum must be positive. This type of first-principles argument was also used, although
less successfully, by about the same proportion of the A /B first-calculus students.

Other solution attempts on Problem 2 suggest that these differential equations
students were relatively comfortable with, and knowledgeable about, algebraic tech-
niques. Yet their knowledge included some common misconceptions. Two students
inappropriately applied Descartes’ Rule of Signs, and eight erroneously concluded
that no roots could exist when the Rational Root Test produced no solutions. Even
this flawed use of algebra is an improvement upon the favored solution method of
the C calculus students: substitute values for z until becoming convinced that no
guess is ever going to work, hence no root exists (a method also used by four of
the differential equations students). Ounly five of the differential equations students
used any calculus on Problem 2, four taking derivatives but not using them. The
fifth student did make effective use of the derivative but made an unrelated error.

4.3. Nonroutine Problem 3.

<1
Let f(z) = a; > Pind a and b so that f is differentiable at 1.

br?+z+1, z>1

Ten students set az = bz? + x + 1, eight of them substituting z = 1 to get
the relationship a = b + 2, and then stopped. Two of these ten students expressed
doubts about the completeness of their solutions. One student had seven solution
tries, all variations on the theme of matching for continuity. Eleven of the 26 who
attempted a solution to Problem 3 took a derivative. Several differentiated ax and
got . Of the eleven who used calculus, eight made at least substantial progress
towards a solution; five used the derivative to arrive at a completely correct solution
and three used it to obtain a substantially correct solution.

4.4. Nonroutine Problem 4.

Find at least one solution to the equation 4z —x* = 30 or explain why no such
solution exists.

There were no completely correct or substantially correct solutions. Since these
traditionally-taught calculus students were not allowed to use graphing, or other,
calculators in this study, no easy graphical methods were available to them. Of the
27 students who attempted this problem, 44% (12 of 27) used the same method:
narrow the domain of possible x values by eliminating those for which 4z3 — z*
cannot be close to 30. Most of these students determined that no solutions could
exist outside of the open interval (1, 4) and some also eliminated the integer values
of 1,2, and 3. This 44% who used sophisticated algebraic and arithmetic reasoning
exceeds the 26% (5 of 19) of A/B calculus students who did so.
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The next most popular solution method, used by six students (22%), was the
Rational Roots Test. However, all six students incorrectly concluded that if a
rational root could not be found from the factors of 30 then no roots at all existed.
In our earlier study of A/B calculus students, this approach was also used by 20%
of the students. Only two students used the method favored by C calculus students
in the earliest study: factor 42> — 2* and set each factor equal to 30. Four students
took the first derivative, set it equal to zero and stopped. Several students used
synthetic division to check whether particular values were roots.

4.5. Nonroutine Problem 5.2
22 —2ax+z—a—1
Is there an a such that lim 5 + exists? Explain your an-
z—3 2 —2x -3

swer-.

On Problem 5, 39% of the solution attempts (11 of 28) were substantially or
completely correct, similar to the 37% (7 of 19) of A/B calculus student attempts
with substantial progress towards a solution.

Of the 28 solution attempts, 15 involved the use of L’Hépital’s Rule. Nine
of these 15 attempts were at least partially successful. In the other six instances
students failed to note that the numerator as well as the denominator must have
limit zero before applying L’Hépital’s Rule. Five students substituted 3 for z, found
the denominator of the expression to be zero and asserted that no limit could exist
since the denominator was zero at the limiting value of the variable (two of these
were mathematics majors). This was the favored method of the C calculus students
(47% of them used it) and was used by 26% of the A/B calculus students. Here it
was found in just 18% (5 of 28) of the solution attempts. Six students struggled,
algebraically, with finding a way to factor the numerator so that the (z — 3) in the
factored denominator could be canceled and the limit taken; two of these resulted
in completely correct solutions.

4.6. Summary.

4.6.1. Use of calculus. Inasmuch as Nonroutine Problem 5 involved evaluating
a limit, any solution attempt could be considered to involve calculus, we omit it
from the following analysis. On Nonroutine Problems 1, 2, 3, and 4, the differential
equations students used calculus — often taking a derivative — on fewer than half
(39%) of all solution attempts (42 of 108). Furthermore, in fewer than half of these
(16 of the 42), students used calculus to produce potentially useful information,
i.e., it could have been used to make progress towards a correct solution. Fifteen
of the 16 potentially useful solution attempts led to substantially or completely
correct solutions. That is, about three-fourths (15 of 21) of the completely or
substantially correct solutions to Nonroutine Problems 1, 2; 3, and 4 made effective
use of calculus.

We observe that the differential equations students were no more inclined to
resort to calculus than were the A/B and C calculus students of the previous two
studies. They did not use calculus on 61% of these attempts (66 of 108); this is
essentially the same percentage as in the previous studies (61% for the A/B and
59% for the C calculus students).

However, it appears that as students proceed through calculus to differential
equations, the number of calculus misconceptions decreases. Slowly they become
more proficient (or perhaps the less competent students drop out). For example,
incorrectly asserting on Problem 5 that the limit of a quotient cannot exist when
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the denominator is 0 went from 47% for C calculus students, to 26% for the A/B
calculus students, to just 18% for the differential equations students.

4.6.2. More sophisticated, but still flawed, use of algebra. Considering now all
five nonroutine problems, on 56% of the solution attempts calculus was not used;
rather, a combination of guessing, trial-and-error, arithmetic techniques, and alge-
bra was used. Eleven of the 32 substantially or completely correct solutions were
almost purely algebraic, seven on Problem 2, one on Problem 4, and three (after
the student observed the need to reduce the fraction in order to take the limit)
on Problem 5. While these solutions demonstrated a level of algebraic competence
not found in the first-year calculus students of our earlier studies, quite a few other
attempts to use algebra were flawed. For example, fourteen solution attempts in-
cluded an improper use of the Rational Root Test and two solution attempts used
Descartes’ Rule of Signs in an inappropriate setting.

4.6.3. Use of graphs. Most graphing was done by students on Problem 1 —
only four other graphs, three incorrect, appeared in all of the solution attempts
for the other problems. Of the 27 students who attempted to solve Problem 1, 22
(81%) sketched at least one graph and six (22%) sketched three or more; this is
substantially higher than the 12 of 19 (63%) who used graphs in the A/B study,
where only 1 (5%) sketched more than two graphs. Fourteen of the 22 who used
graphs in the present study first drew some version of the graph pictured in Figure
2. Of those 14 students, six also produced a correct graph like that in Figure 3.
Three of these six rejected an incorrect graph (by striking through it); giving one
substantially correct and two completely correct solutions to Problem 1, perhaps
an example of monitoring their work (Schoenfeld, 1985, 1992). A fourth student
drew only the correct graph, the one pictured in Figure 3, and gave a completely
correct solution.

FI1GURE 2. Example of fre- Fi1GURE 3. Example of a
quently sketched incorrect correctly sketched graph
graph for Problem 1. for Problem 1.

The fifth completely correct solution for Problem 1 came from a student who
drew no graphs at all. Hence, in this study, four of the five completely correct
solutions showed a graph while only one of the three completely correct solutions
in the previous study of A/B students was accompanied by a graph. The other
three differential equations students who drew both graphs used little calculus and
did not indicate any rejection of incorrect graphs; in fact, all three seemed to be
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considering various cases for values of a and b by drawing a variety of graphs
(between them, these three students produced ten graphs). The others who drew
graphs were either misled by the assumption that the parabola was concave up (e.g.
as in Figure 2) or gained no useful information from their graphs.

Whereas students who successfully solved Problem 1 in the present study were
willing to draw and reject graphs, those in the A/B study who chose to use graphs
generally had only one — either correct accompanied by a substantially or completely
correct solution or incorrect and accompanied by an incorrect solution. In the A/B
study, 16 graphs were produced by 12 students on Problem 1 whereas in the present
study, 37 graphs were drawn by 22 students. Three of the 12 A/B students who
used graphs (25%) rejected (crossed out) one of their graphs (including one who
rejected a graph which was correct) while six of the 22 (27%) who used graphing
on Problem 1 in this study rejected a graph. It would appear, then, that although
the more experienced students were more willing to consider graphical ideas than
the less experienced students (81% versus 63%), they were about equally likely
to abandon the graphs they produced. This provides some evidence that extra
experience in a traditional classroom environment does not necessarily increase
effective self-regulation during problem solving (Boaler, 1999; Schoenfeld, 1992).

DeFranco’s (1996) paper on expert problem solvers with Ph.D.’s in mathematics
suggests that the skills possessed by experts which are often lacking in nonexperts
might include a willingness to create, abandon, and revisit many ideas in the solution
process. Thus it might be useful to know how students develop a willingness to risk
committing graphical, and other ideas, to paper and to reject such ideas once they
have been given life on paper.

5. Analysis

Reflecting on the three studies, one wonders when, if ever, traditionally taught
students learn to use calculus flexibly enough to solve more than a few nonroutine
problems. Furthermore, how could it happen that students, who were more suc-
cessful than average by a variety of traditional measures and who demonstrated full
factual knowledge for a nonroutine problem, failed to access and use their knowl-
edge successfully on 76% of their attempts (as shown in Table 5)? Many of these
students (the engineering majors) had almost completed their formal mathemati-
cal educations, except possibly for one or two upper-division mathematics courses,
leaving them limited opportunity in future mathematics courses to improve their
abilities to solve nonroutine problems. Finally, does it matter whether students can
solve such problems?

5.1. When do students finally learn to apply calculus flexibly? It
would appear from this sequence of three studies that, at least for traditionally-
taught calculus students in classes of 35—40, the ability to solve nonroutine calculus
problems develops only slowly. Performance for the best students went from one
third who could solve at least one nonroutine beginning calculus problem toward
the end of their first year of college calculus to slightly less than half who could do
so toward the end of the two-year calculus/differential equations sequence. In ad-
dition, the percentage of correct solutions increased slightly over the three studies
(see Table 6).

For the sake of comparison, consider for a moment only those students in this
study who had a grade of A or B in first-term calculus. There were 19 of them, nine
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TABLE 6. Percent of correct solutions in all three studies.

Completely Substantially

Study correct correct
DE 14% (20/140) 9% (12/140)
(A/B) Calculus 9% (9/95) 9% (9/95)
(C) Calculus 0% (0/85) 7% (6/85)

A and ten B. In the previous study of A/B calculus students there were ten A and
nine B students. In the two groups of students there was very little difference in the
number who did not answer any nonroutine problem at least substantially correctly
(8 in the previous study, 6 in this one). In Figure 4 we show the distribution of
students according to how many nonroutine problems each answered. For this
figure, a substantially correct solution was counted as 0.5 and a completely correct
solution as 1; e.g., the one student in the A/B study who gave two completely
correct and two substantially correct solutions is represented by the single box to
the left of the 3 in Figure 4. In Figure 5 we give similar histograms for just the
completely correct solutions. Only two of the completely correct solutions in this
(the DE) study came from students who had a C in first calculus, the other 18 were
from A and B students. In both figures, the incremental shift upward is apparent,
but not significant. 2

All students A/B students All students A/B students
in A/B study n in DE study in A/B study n in DE study
O 3 [0 3 [
25 [
O 2 [ 1 2 0O
[J 15
(ITI11 12 [CLCLCITT] CIIrri] 12 CLILTTTT
[IT1T7 o5 [

(ITITTTT) o [ILIITT] CITTITTTTTTTIT] o [CIITTTITTI
FIGURE 4. Number of stu- FIGURE 5. Number of
dents with at least n sub- students with n com-
stantially correct solutions. pletely correct solutions.

Notably, by the time these students were coming to the end of their calcu-
lus/differential equations sequence their algebra skills seemed to be relatively so-
phisticated and readily accessible, albeit somewhat flawed. Such slow, incremental
growth in mathematical capabilities may not be unusual. In a cross-sectional study
of students’ development of the function concept, Carlson (1998) investigated stu-
dents who had just received A’s in college algebra, second-semester calculus, or
first-year graduate mathematics courses. She found that “even our best students
do not completely understand concepts taught in a course, and when confronted
with an unfamiliar problem, have difficulty accessing recently taught information.
. . . Second-semester calculus students had a much more general view of functions

2The mean number of nonroutine problems at least substantially correct per student for the
A/B study was Z1 = 0.68 (with standard deviation s; = 0.82) whereas for this study the mean
was Zo = 1.16, (with sy = 1.11). The result of a Wilcoxon test on the hypothesis Hy : T2 = Z1
is p ~ 0.2. For the comparison of completely correct solutions, a Wilcoxon test on Hp : Tz = T1
gives p ~ 0.16. These p-values are too large to say there is a statistically significant improvement.
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[than college algebra students, but] . . . they were unable to use information taught
in early calculus.”

In addition, it is not unusual for students to fall back on earlier mathematical
techniques with which they are perhaps more familiar and more comfortable. In a
study of 900 Australian high school students in Years 9 and 10 (“in their third or
fourth year of algebra learning”), Stacey and MacGregor (1997) found that when
asked to solve three simple word problems, a large proportion wrote no equations,
even though specifically asked to, and others tried to write equations but then
switched to non-algebraic methods including trial-and-error and arithmetic reason-
ing to solve the problems.

In an analogous fashion, the differential equations students in this study relied
more often (in 76 of 136 solution attempts) on a variety of arithmetic and algebraic
techniques than on calculus. Taken together, our three studies suggest the folklore
that one only really learns a course’s material in the next course appears to be not
quite accurate, rather several additional courses may be necessary. The differen-
tial equations students seemed most comfortable with algebraic methods — ideas
first introduced to them several years before. Perhaps during those intervening
years they had been exposed to numerous algebraic (sub)problems and built up a
familiarity with algebraic techniques and habits of mind.

As in our previous two studies, over half of the students made no use whatever
of calculus. This gives a negative answer to the question we posed in 1994: Would
students at the end of a traditional calculus/differential equations sequence be more
inclined to use calculus techniques in solving problems? Most of the students in
this study had not learned to apply beginning calculus flexibly by the end of the
calculus-differential equations sequence and many might well never do so.

The idea that students might or might not apply calculus, or any mathematics
flexibly has been discussed by Dorier et al. (1998). They introduced three levels of
applying mathematical knowledge to tasks: a technical level in which students are
asked to apply calculus skills and use definitions, properties and theorems directly;
a mobilizable level in which students adapt their knowledge to tasks which are not
direct applications, require several steps, require some transformation or recogni-
tion that a property or theorem is to be applied; an available level in which students
solve problems without being given an indication of methods, or must change rep-
resentations. Dorier and colleagues tested one hundred French university students
who had graduated (Licence) and were preparing for the CAPES competitive ex-
amination for teaching at secondary level (which just one in eight pass and which
has curriculum the same as that for mathematics majors in the first two years of
university). Dorier et al. found that whenever problems were anything but the
technical level, the success rate was under 10%. These findings seem comparable to
those in this study regarding students, who at the end of their calculus-differential
equations sequence, produced just 14% completely correct solutions to our nonrou-
tine problems (Table 6).

5.2. How does it happen that students can have the knowledge, but
not be able to access and effectively use it to solve nonroutine problems?
Part of the rationale for having our students take the routine test after the non-
routine test was to determine whether they had the requisite algebra and calculus
skills to solve the nonroutine problems, but were unable to bring them to mind or
to use them. This was a concern first raised by the study done with C calculus stu-
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dents (Selden et al., 1989). Adding the numbers in Table 4, one sees that for
most nonroutine problem attempts (103 out of a possible 140), the differential
equations students had an adequate knowledge base (i.e., full or substantial factual
knowledge), yet just 32 of their attempts were successful (i.e., produced completely
or substantially correct solutions to nonroutine problems). The inability of many
otherwise successful students to access and effectively use their factual knowledge
of calculus in nonroutine problem solving is perhaps the most striking feature of
our data.

Editorial comment on our second study (Selden et al., 1994) of A/B calculus
students raised the question of whether the parameterizations in some of our non-
routine problems might have caused them to be viewed as questions about families
of functions, thereby rendering them inordinately difficult. Indeed, three of the five
problems could be viewed in this way (Problems 1, 3, and 5). However, rather than
being interpreted as indicating families of functions, the letters a and b appeared
to have been interpreted by these students as fixed unknowns whose values they
were expected to find. Much of their written work supports this idea. The a and
b seemed to play much the same “arbitrary constant” role for these students as m
and b do in the slope-intercept form of a line, y = mx + b. In fact, it was on these
three problems (especially Problem 5) that the students did the best. Problems 1,
3, and 5 accounted for 85% (17 of 20) of the completely correct solutions.

We conclude that these problems were no more difficult for our students than
Problems 2 and 4. If anything, Problems 2 and 4 proved to be the most difficult
ones, and it was on these problems that students used algebraic and numerical trial-
and-error methods. While it was possible to solve Problem 2 without calculus and
three students did so completely correctly, Problem 4 was particularly intractable
without calculus. Some students may not initially have accessed their calculus
knowledge because this problem brought to mind algebraic techniques for solving
an equation, namely 42° — z* = 30. Developing a calculus-based solution would
have entailed considering 423 — z*, alternatively 4z3 — z* — 30, as a function to be
maximized, something they did not do.

In discussing Problem 4 we have mentioned bringing knowledge to mind, or ac-
cessing it, and the next section will depend on this terminology. The knowledge to
which we refer is part of what has been called a person’s knowledge base (Schoenfeld,
1992; Selden and Selden, 1995). This, in turn, is contained in what cognitive
psychologists would call long-term memory (Baddeley, 1995). One is not aware
of the contents of long-term memory, but knowledge there can be “activated,”
i.e., brought into short-term memory, and thereby brought into awareness. This
appears to be close to what we mean by knowledge coming to mind. We do not
mean just that the knowledge can be acted upon or used, but that it can be used in
a special way — that it is conscious. There are a number of kinds of consciousness.
Some arise from the external world through the senses after considerable lower-level
processing and construction of meaning. Others include inner-speech and vision,
or more subtle phenomena such as a feeling of understanding. Differing aspects of
consciousness have been discussed by James (1910); for an example of more recent
work see Mangan (1993).

5.2.1. An additional kind of knowledge. Tt may be that students who failed to
solve our nonroutine problems despite demonstrating full factual knowledge did not
effectively employ some of Schoenfeld’s hallmark categories of problem-solving, i.e.,



CALCULUS STUDENTS AND NONROUTINE PROBLEMS 145

resources (including knowledge), control, heuristics, and beliefs (Schoenfeld, 1985).
However, our problems are not very nonroutine and their solutions are relatively
straightforward. The unfruitfulness of false starts is not especially hidden, e.g.,
attempting to factor 42® — z* — 30 in Problem 4; also there is little need to invent
multiple sub-problems. Solving such problems seems to call especially on resources,
in particular on a kind of knowledge that “triggers” the use of factual knowledge
appropriate to the specific problem situation. To put this another way, we suspect
that what is required to solve our moderately nonroutine problems is, mainly, some
sense of the domain and what is important in it, above and beyond basic mastery
of techniques, definitions, and their entailments. It is the way this sense of domain,
regarded as a kind of knowledge, can bring to mind factual knowledge that we hope
to explain.

The nature of this additional kind of knowledge cannot be fully established from
an analysis of data such as ours, which does not emphasize the process aspect of
problem solving. However, we will now frame a discussion of it in terms that might
be useful in later, more process-oriented, research. A person who has reflected on
a number of problems is likely to have seen (perhaps tacitly) similarities between
them. He or she might be regarded as recognizing (not necessarily explicitly or con-
sciously) several overlapping problem situations arising from problems with similar
features. For example, experienced students would probably recognize a problem
as one involving factoring, several linear equations, or integration by parts.

A problem situation seems to be much like a concept. While such a situa-
tion may lack a name, for a given individual it is likely to be associated with an
image. This image is a mental structure possibly including strategies, examples,
non-examples, theorems, judgments of difficulty, and the like, linked to the problem
situation. Following Tall and Vinner’s (1981) idea of concept image, we call this
kind of mental structure a problem situation image and regard it as a part of one’s
knowledge base. When a problem situation is recognized, most of the features in
its image do not immediately come to mind, i.e., into consciousness. Rather they
seem to be partly activated (Baddeley, 1995), that is, they are very easily brought
to mind as needed. Some such images may, and others may not, contain what we
will call tentative solution starts: tentative general ideas for beginning the process
of finding a solution. A tentative solution start might be seen as a strategy for
solving the problem at hand. For example, a problem situation image involving the
solution of an equation might include “try getting a zero on one side and then fac-
toring the other.” It might also include “try writing the equation as f(z) = 0 and
looking for where the graph of f(z) crosses the z-axis,” or even “perhaps the max
of f is negative so f(x) = 0 has no solution.” We suggest that the problem-solving
process includes the recognition of a problem as belonging to one or more problem
situations and partly activates their associated images. This, in turn, easily brings
to mind a tentative solution start or strategy (specific to the problem) contained
in one of those problem situation images. This may thereupon mentally prime the
recall of additional resources from one’s knowledge base. Thus a tentative solu-
tion start may link recognition of a problem situation with recall of appropriate
resources, i.e., what we have called accessing factual knowledge.

Although the kinds of calculus problem situations perceived by students do
not seem to have been well examined, a number of studies of problem-solving per-
formance support the idea that students recognize problem situations in various
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ways (Hinsley, Hayes, and Simon, 1977; Schoenfeld, 1985, Chapter 8). In research
on physics problem-solving, features focused on by solvers have been observed to
correspond to the degree of expertise. Novices tend to favor surface characteristics
(e.g., pulleys), whereas experts tend to focus on underlying principles of physics,
like conservation of energy (Chi, Feltovich, and Glaser, 1981).

In this study a number of students tried factoring on Problem 4. When this
algebraic approach did not work, had those students’ images of such problems
included “try looking at whether the graph crosses the z-axis,” they might have
recalled their knowledge of graphs and calculus to discover that the maximum was
too small for the equation to be solvable. In viewing our data from this perspective,
we are suggesting that problem situations, their images, and the associated tentative
solution starts all vary from student to student and that the process of mentally
linking recognition (of a problem situation) to recall (of requisite resources) through
a problem situation image might occur several times in solving a single problem.
We are not suggesting this is the only way accessing one’s knowledge base might
occur, just that it could play an important role in solving the kind of moderately
nonroutine problems discussed in this paper.

Recognizing a problem as associated with a particular problem situation image
and bringing to mind a tentative solution start from that image results in what
Mason and Spence have called “knowing-to act in the moment” (1999). Here the
“act” is using the tentative solution start and knowing to should be contrasted
with knowing how (procedural knowledge) and knowing that (conceptual knowl-
edge). For example in Problem 4, reading the problem invokes a problem situation
image whose richness depends upon the student’s previous experiences. A pos-
sible tentative solution start that might come to mind from the student’s image
would be knowing to subtract 30 from both sides. However once the student es-
tablishes that attempting to solve the equation by algebraic methods is fruitless,
the problem situation is changed. If the student’s problem situation image is rich
enough to contain a tentative solution start based on examining where the graph
of y = 423 — 2* — 30 crosses the z-axis, knowing to do so would probably come to
mind. We mean by this that the student could unhesitatingly respond if questioned
about her/his intentions at that moment, and might report a conscious feeling of
intending to examine the graph, or even report having articulated that intention
in inner-speech. Alternatively, the student might simply begin to draw the graph.
However, if the student’s problem situation image lacked this or a similar tentative
solution start, he or she might bring nothing to mind and would be reduced to
searching her/his knowledge base for a serendipitous link to the problem. Many
students may have neither time nor self-confidence enough for such a search. They
might not solve the problem even if they know the relationship between roots of
an equation and where the graph of the corresponding function crosses the z-axis
because such information was not linked to the problem in a way that brings using
it to mind.

Except while actually taking classroom tests, students in this study could have
consulted worked examples from textbooks or lecture notes during their previous
problem-solving attempts. Those who habitually consulted such worked examples
before attempting their own solutions may have had little occasion or reason to
reflect on multiple tentative solution starts. Such students might well have impov-
erished problem situation images with very few tentative solution starts, thereby
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reducing the usefulness of these images in priming the recall of factual knowledge.
This could happen even if they realized a new idea was needed, that is, even if
they exercised (metacognitive) control (Schoenfeld, 1985, 1992). In summary, we
are suggesting that some of the students who were unable to solve our nonrou-
tine problems, although demonstrating full factual knowledge, may have lacked
a particular kind of knowledge, namely tentative solution starts. This may have
been due to a combination of the text, the way homework exercises were assigned
and discussed, and our students’ study habits. Much of our data concerning these
students, who had adequate factual knowledge but did not access it to solve our
nonroutine problems, is consistent with the above analysis.

5.3. Does it matter whether students are able to solve nonroutine
problems? Perhaps surprisingly, the answer seems to be both yes and no. No,
because the students in this study were among the most successful at the uni-
versity by a variety of traditional indicators, both at the time of the study and
subsequently, yet half of them could not solve a single nonroutine problem. They
had overall GPAs of just above 3.0 at the time of the study and almost double the
graduation rate of the university as a whole. At least seven of them subsequently
earned a master’s degree and one a Ph.D. Furthermore, the idea that traditional
academic success may not require very much nonroutine problem-solving ability,
including metacognitive control, is supported by DeFranco’s problem-solving study
comparing mathematicians of exceptional creativity (e.g., Fields medallists) with
very successful published Ph.D. mathematicians. He found that while both were
content experts, only the former were problem-solving experts (DeFranco, 1996).
Thus, it seems possible to be academically successful in mathematics and related
subjects without consistently being able to solve nonroutine problems, especially
the more difficult ones in which Schoenfeld’s (1985, 1992) problem-solving charac-
teristics (resources, heuristics, control, and belief systems) play a large role.

On the other hand, yes, it does matter. Most mathematicians in our experience
seem to regard this kind of problem solving as a test of deep understanding and the
ability to use knowledge flexibly. In addition, most applied problems that students
will encounter later will probably be at least somewhat different from the exercises
found in calculus and other mathematics textbooks. It seems likely that much
original or creative work in mathematics would require novel problem solving at
least at the modest level of the nonroutine problems in this study. Thus, when
other academic departments decry students’ inability to apply their mathematics,
the difficulty may lie partly with the ability to solve nonroutine problems generally,
rather than with particular kinds of applications.

In addition mathematicians often appear to view students’ mathematical ability
through the lens of problem solving, meant broadly to include a wide range from
simple exercises to nonroutine problems and the construction of proofs. As teachers
they typically design problems whose solution requires deep understanding rather
than gauging such understanding directly, for example, through evaluating an essay
on the nature of continuity and its relationship to differentiability. Thus, in order
to more precisely discuss mathematicians’ views of which student abilities matter,
it would be useful to have a way of analyzing kinds of problems. In what follows,
we discuss only degrees of nonroutineness and not the many other facets of problem
solving.
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5.3.1. A nonroutineness scale. It may be helpful to consider problems (tasks
together with solvers) arising in a mathematics course as arranged along a con-
tinuum according to routineness relative to the course. We regard the degree of
routineness of a problem as dependent on what the solver knows so a task that
is routine for one student may be nonroutine for another. Nevertheless, the rou-
tineness of a problem, for most students, might be estimated by what has come
up in the course. At one end of the continuum, we might have very routine prob-
lems which mimic sample problems found in the text or lectures, except for minor
changes in wording, notation, coefficients, constants, or functions, that students
view as incidental to the way the problems are solved. Such problems are often re-
ferred to as exercises and might not be regarded as problems at all in the problem
solving literature (Schoenfeld, 1992). Moving toward the middle of the continuum,
we might place moderately routine problems which, although not viewed as exactly
like sample problems, can be solved by well-practiced methods, e.g., ordinary re-
lated rates or change of variable integration problems in a calculus course. Sandra
Marshall (1995) has studied how schema can be developed to reliably guide the
solution of such problems at and below the precalculus level. Moving further along
the continuum, one might have moderately nonroutine problems, which are not very
similar to problems that students have seen before and require known facts or skills
to be combined in a novel way, but are “straightforward” in not requiring, for exam-
ple, the consideration of multiple sub-problems. The nonroutine test in this study
consisted of problems of this kind. Finally, at the opposite end of the continuum
from routine problems, one might place very nonroutine problems which may in-
volve noticing unusual patterns, considering several sub-problems or constructions,
and using Schoenfeld’s (1985) characteristics of effective problem solving. For such
problems a large supply of tentative solution starts, built up from experience, might
not be adequate to bring to mind the knowledge needed for a solution, while for
moderately novel problems such as ours it probably would.

Here is an example of what, for most undergraduates, would be a very non-
routine problem?®. Given a point (a,b) with 0 < b < a, determine the minimum
perimeter of a triangle with one vertezx at (a, b), one on the x-axis, and one on the
liney = x. You may assume that a triangle of minimum perimeter exists. This
appears to be a calculus problem, but it only requires clever use of geometry. An
elegant solution* involves extending the construction “outward” by reflecting across
both the lines y = x and the z-axis and noticing that the perimeter of the triangle
equals the distance along the path from (b, a) to (a, —b). Thus, minimizing the
perimeter amounts to making that path straight. Probably only exceptionally ex-
perienced geometry problem solvers would have previously constructed images of
problem situations containing a tentative solution start that would easily bring to
mind such an unusual construction and “path straightening” technique.

Although in this paper we only discuss the degree of routineness of problems,
there are other important aspects to problem solving. Some problems require an
understanding of the underlying conceptual notions or the application of the core
ideas behind the content. In addition, some problems call for the use of heuristics
or problem-solving strategies. Furthermore, some problems may require a kind of

3Taken from the 59th Annual William Lowell Putnam Mathematical Competition (1998; see
also Putnam Exam, 1991;Reznick, 1994).
4Posted by Iliya Bluskov to the sci.math newsgroup.
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cleverness that goes beyond understanding content and beyond problem-solving
heuristics. In particular, we observe that routineness differs from difficulty. The
most routine of exercises can be quite difficult, e.g., requiring the fast execution of
a long procedure, overloading working memory and leading to what students often
call “dumb mistakes.”

Most university mathematics teachers would probably like students who pass
their courses to be able to work a wide selection of routine, or even moderately
routine, problems. In addition, we believe that many such teachers would expect
their better students to be able to work moderately nonroutine problems such as
ours. Many seem to think of this as functionally equivalent to having a good
conceptual grasp and understanding of a course. In other words, the ability to
work moderately nonroutine problems based on the material in a course is often
part of the implicit curriculum. Thus, yes, it matters if most students cannot
work moderately nonroutine problems because for the mathematical community
the essence of the material in the course is not being successfully mastered, even
by good students.

6. Implications for Teaching

The results reported here suggest that, at least in a traditionally taught calcu-
lus/differential equations sequence, many good students may not reach the level of
understanding and moderately nonroutine problem-solving ability that their teach-
ers expect. In order that good students reach this level, nonroutine problem solving
may need to become an explicit part of the curriculum, that is, to be in some way
explicitly taught. Furthermore, our explanation of the data — that students’ prob-
lem situation images tend to lack a variety of tentative solution starts — suggests
that the ability to solve moderately nonroutine problems may depend partly on a
rich knowledge of problem situations as well as on more general problem-solving
characteristics (Schoenfeld, 1985, 1992).

We limit our comments on teaching mainly to how to improve student ability
to solve moderately nonroutine problems, e.g., problems similar to those on our
nonroutine test. For suggestions on developing student ability to solve very non-
routine problems in which all of Schoenfeld’s problem-solving characteristics are
likely to play major roles, see Arcavi et al. (1998) and Schoenfeld (1985). We will
focus on improving a part of what Schoenfeld calls resources, namely the richness of
problem situation images. If our analysis in Section 5.2.1, or something close to it,
is correct then encouraging students to build rich problem situation images should
help bring to mind appropriate factual knowledge when needed. Of course, to bring
to mind appropriate factual knowledge when needed, the student must have such
knowledge. However, it was not factual knowledge that most of our differential
equations students lacked, rather it was access to and knowing-to use it. That is
what we address now.

For the purposes of this discussion we will assume students know a number of
algebraic techniques for solving equations, quite a bit about graphs, the intermedi-
ate value theorem, how to find maxima and minima, which functions are continuous
or discontinuous, that the real roots of f(xz) = 0 are the points where the graph of
y = f(x) meets the z-axis, etc. The material on our routine test fits into this cate-
gory. In addition, we assume they know things like solving f(x) = g(z) amounts to
solving f(z) — g(x) = 0, that the intermediate value theorem can be used to show
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there is a root to y = f(z), and looking at maxima or minima can show f(z) is
entirely positive or negative and thus does not meet the z-axis — material covered
in most traditionally taught calculus courses.

To build rich problem situation images that contain a number of tentative
solution starts, the students would have to see a problem situation as an object (al-
though probably tacitly and without name) which is associated with other objects.
We see student construction of problem situations as objects as requiring a student
to engage in multiple activities and experiences. We view this as being analogous
to the construction of new concepts, such as the function concept, as described by
Breidenbach et al. (1992) or Sfard (1991). Merely pointing out how a solution to a
particular problem is started might not be any more effective than merely pointing
out the features of a new concept, such as that of function.

One way of giving students multiple experiences that might lead to the con-
struction of rich problem situation images would be to scatter throughout a course
a considerable number of problems for students to solve without first seeing very
similar worked examples. We mean to suggest a collection of problems that cover
the course well and that most of the students really can eventually solve, albeit
with some difficulty. The idea is that the students would struggle with these prob-
lems and reflect on their solutions more than they would with traditional exercises
mimicking worked examples. However, we note that students often expect to be
told precisely how to work problems. Thus, a change in the prevalent classroom
culture that prefers tedium over struggle and reflection might be required. Such
change might be difficult for some instructors, but there is some evidence it can be
effected by reiterating in class that struggle and reflection are expected (Davis and
Hauk, in preparation).

Alternatively, some problems might be solved in two phases. Problems could be
introduced with the understanding that the first phase ends with students reporting,
perhaps in writing, on their tentative solution starts, before going on to complete
the solution in the second phase. As a practical matter, this kind of activity would
probably be taken more seriously if it were in some way reflected in homework,
classwork, and tests. For tests, adequate time for reflection would need to be
allowed. Indeed, one might not ask for full solutions to such a problems, but only
clear descriptions of how to begin.

Another approach to providing the multiple experiences that could lead to rich
problem situation images might be to ask students to justify the steps in solved
problems, whether from the text, another student, or the instructor. Students
might be asked to discuss alternative solution methods and the degree of promise
of each. Such an approach might be incorporated into homework and tests and
seems particularly appropriate for class presentations by students or group work.
As an example, Santos-Trigo (1998) describes an aspect of Schoenfeld’s problem-
solving course where “homework assignments include problems in which students
have the opportunity to discuss differences and qualities of each approach,” i.e.,
to examine tentative solution starts and, “students search for multiple solutions,
but they write their ideas clearly and support their methods with mathematical
arguments.”

A teacher might also use something akin to Socratic dialog with one or several
students, or even with a whole class. ;jFrom the point of view of building rich
problem situation images, there are several benefits of such dialog: students can
be brought to focus on various tentative solution starts, they can sometimes solve
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a greater variety of problems than otherwise, and they might eventually adopt the
kinds of reflective questions the instructor asks in something like an “inner Socratic
dialog.” The questions in such an inner Socratic dialog might prompt bringing to
mind appropriate factual knowledge. However, such reflective questions themselves
must come to mind or at least be acted upon. The way inner Socratic dialog might
be engendered in students, what form it might take, and to what degree it would
be useful are interesting questions for future research. What we are talking about
is distinct from the kind of habituation to questions such as “What are you doing?”
discussed in Arcavi et al. (1998) and Schoenfeld (1985).

Having students work in groups might combine well with several of the above
suggestions. There are a number of benefits to group work but two seem particularly
pertinent. Students working in a group have additional sources of factual knowledge
beyond those available when working alone. Thus, they may solve more and harder
problems (Kieren, Calvert, Reid, and Simmit, 1995; Trognon, 1993). In addition,
the discussion in a group may encourage individual students to reflect on their
solutions or the groups’ solutions. Indeed, discussion itself may be somewhat like
reflection (Sfard, Nesher, Streefland, Cobb, and Mason, 1998). Thus, working in
groups may help students enrich their problem situation images.

A college instructor’s typical response might be, “But I don’t have time for
this!” We agree that implementing any of the above suggestions may call for con-
siderable time, which is in short supply in college mathematics courses. The time
might be obtained by assigning and discussing fewer problems: a reduced collection
of problems which addresses a broader range of the nonroutineness scale. Examina-
tion of a variety of problems in the ways we suggest, by teacher and students alike,
might improve students’ ability to solve moderately nonroutine problems without
reducing their command of routine exercises.
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